NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 434

LIFT AND DRAG CHARACTERISTICS AND GLIDING PERFORMANCE OF AN AUTOGIRO AS DETERMINED IN FLIGHT

By JOHN B. WHEATLEY

INDAMENTAL AND DERIVED UNITS

100		1		Benglish	
12.		Symbol	Unit Bymbol	Unit-	Symbol
1. A. W. L.	Length Time Force		meter m second weight of one kilogram as	foot (or mile) second (or hour) weight of one pound	ft. (or mi.) sec. (or hr.) lb.
(18.7.1.1	Power Speed		tomb	hiornepower mi/hr. fk/sec	hp m., p. h. f. p. s.

1. 15		300	3.		2	GEN	ERAL	SYMB	OLS, E	TC.	/i / '		7	-	× .
7	Wain	ht – m		1.2	5		1 3	_ mle	Mom	ent of	inerti	a (indi	cate a	xis of	the
	٠	tani a	ooslare	Hinat A		4 - - C					gyrai				
15		J-20	1746	in land		14.35			SCH	ny l		و ريا تعلق ا	AP	.apor	
12	<="	107	. 14.50	k loon'					Area,	P. (٠	, T. 94 1 1 4 34
	Mass	<u> </u>	13 12 Ye				5 7		Wing.					-	
- 1	E	/U*x	*	3 th - 2		4			A mg	Bler,	etc.	¥.4"	N 88 1 3		
6	Dens	ity (m	ase pe	r unit	volum	e).	- C-1	2 6/2	Gap.	and the second					
i	dard	densi	y of	try ai	r, 0.12	497, (rg-m	, 02	Span.		+ 2		المرام في		

the weight of standard g/m*-0.0765£15./ft.

- D_r Drag, absolute coefficient $C_0 = \frac{1}{oS}$
- D. Profile drag, absolute coefficient Qu
- D. Induced drag, absolute coefficient C
- \mathcal{D}_{p} , Parasite drag, absolute coefficient $C_{\mathcal{D}}$
- Cross-wind force, absolute coefficient
- Resultant force.
- Angle of setting of wings thrust line).
- ngle of stabilizer setting

- Resultant moment.
- Resultant angular velocity.
- Reynolds Number, where l is a linear dimension.
 - er g., for a model airfoil 3 in. chord, 100 mi./hr. normal pressure, at 15° C., the corresponding number is 234,000;
 - or for a model of 10 cm chord 40 m/s, the corresponding number is 274,000.
- Center of pressure coefficient (ratio of distance of c. p. from leading edge to chord length).
- Angle of attack.
- Angle of downwash.
- Angle of attack, infinite aspect ratio.
- Angle of attack, induced.
- Angle of attack, absolute.
 - (Measured from zero lift position.)
 - Right path angle.

REPORT No. 434

LIFT AND DRAG CHARACTERISTICS AND GLIDING PERFORMANCE OF AN AUTOGIRO AS DETERMINED IN FLIGHT

By JOHN B. WHEATLEY
Langley Memorial Aeronautical Laboratory

130470—32

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NAVY BUILDING, WASHINGTON, D. C.

(An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. Its membership was increased to 15 by act approved March 2, 1929 (Public, No. 908, 70th Congress). It consists of members who are appointed by the President, all of whom serve as such without compensation.)

JOSEPH S. AMES, Ph. D., Chairman,

President, Johns Hopkins University, Baltimore, Md.

DAVID W. TAYLOR, D. Eng., Vice Chairman,

Washington, D. C.

CHARLES G. ABBOT, Sc. D.,

Secretary, Smithsonian Institution, Washington, D. C.

GEORGE K. BURGESS, Sc. D.,

Director, Bureau of Standards, Washington, D. C.

ARTHUR B. COOK, Captain, United States Navy,

Assistant Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.

WILLIAM F. DURAND, Ph. D.,

Professor Emeritus of Mechanical Engineering, Stanford University, California.

BENJAMIN D. FOULOIS, Major General, United States Army,

Chief of Air Corps, War Department, Washington, D. C.

HARRY F. GUGGENHEIM, M. A.,

The American Ambassador, Habana, Cuba,

CHARLES A. LINDBERGH, LL. D.,

New York City.

WILLIAM P. MACCRACKEN, Jr., Ph. B.,

Washington, D. C.

CHARLES F. MARVIN, M. E.,

Chief, United States Weather Bureau, Washington, D. C.

WILLIAM A. MOFFETT, Rear Admiral, United States Navy,

Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.

HENRY C. PRATT, Brigadier General, United States Army,

Chief, Matériel Division, Air Corps, Wright Field, Dayton, Ohio.

EDWARD P. WARNER, M. S.,

Editor "Aviation," New York City.

ORVILLE WRIGHT, Sc. D.,

Dayton, Ohio.

GEORGE W. LEWIS, Director of Aeronautical Research.

JOHN F. VICTORY, Secretary.

HENRY J. E. REID, Engineer in Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va. JOHN J. IDE, Technical Assistant in Europe, Paris, France.

EXECUTIVE COMMITTEE

JOSEPH S. AMES, Chairman. DAVID W. TAYLOR, Vice Chairman.

CHARLES G. ABBOT.

GEORGE K. BURGESS.

ARTHUR B. Cook.

BENJAMIN D. FOULOIS.

CHARLES A. LINDBERGH.

WILLIAM P. MACCRACKEN, Jr.

CHARLES F. MARVIN.
WILLIAM A. MOFFETT.

HENRY C. PRATT.

EDWARD P. WARNER.

ORVILLE WRIGHT.

JOHN F. VICTORY, Secretary.

REPORT No. 434

LIFT AND DRAG CHARACTERISTICS AND GLIDING PERFORMANCE OF AN AUTOGIRO AS DETERMINED IN FLIGHT

By JOHN B. WHEATLEY

SUMMARY

The results of flight tests made by the National Advisory Committee for Aeronautics on a Pitcairn "PCA-2" autogiro are presented in this report. Lift and drag coefficients with the propeller stopped have been determined over approximately a 90° range of angles of attack. Based on the sum of fixed-wing and swept-disk areas, the maximum lift coefficient is 0.895, the minimum drag coefficient with propeller stopped is 0.015, and the maximum L/D with propeller stopped is 4.8. Lift coefficients were found also with the propeller delivering positive thrust and did not differ consistently from those found with propeller stopped. Curves of gliding performance included in this report show a minimum vertical velocity of 15 feet per second at an air speed of 36 miles per hour and a flight-path angle of -17° . In vertical descent the vertical velocity is 35 feet per second.

INTRODUCTION

Research on the autogiro has been undertaken by the National Advisory Committee for Aeronautics in connection with the study of the general problem of safety in flight. The essential characteristic of the autogiro that distinguishes it from conventional airplanes is that the velocity of the lifting surfaces with respect to the air is almost entirely independent of the velocity of the machine as a whole. The value of this attribute with respect to safety lies in the increase in the useful range of air speeds at which flight may be maintained.

The determination of lift and drag characteristics was decided upon as the initial step into an extensive program of research because of the lack of reliable full-scale information on the fundamental aerodynamic characteristics of the autogiro and the need to establish clearly a datum to which further work will be referred. The curves and data contained in the body of this report constitute, so far as is known, the first authentic full-scale information concerning autogiro characteristics that has been published. This report presents the results of a series of glide tests, made to determine the lift and drag characteristics of a Pitcairn PCA-2 autogiro over the full range of angles of attack. The tests were performed by the National Advisory Committee for Aeronautics at Langley Field, Va.

APPARATUS AND METHODS

The tests were performed on a Pitcairn PCA-2 autogiro, shown in Figure 1. The essential physical characteristics of the autogiro are as follows:

Rotor		Symbol
Number of blades	b	4.
Profile of section		Göttingen 429.
Diameter	2R	45.0 ft.
Blade chord (outer straight portion)		
Disk area.		
Solidity		
		area/disk
		area.
Wing		
Profile		Modified N.A.C.AM3.
Span		
Chord-root		
Area—projected	Sw	101 sq. ft.
Aspect ratio		9.1.
Incidence		
General		
Total area	S=Sp-	+Sw 1,689 sq. ft.
Gross weight as flown.	W	2,940 lb.
Wing loading		
Engine		
Power—rated		

The essential quantities necessary to a determination of lift and drag characteristics are dynamic pressure, flight-path angle, and attitude angle. Measurements of dynamic pressure and flight-path angle were obtained during a portion of the tests from an N.A. C. A. flight-path-angle and air-speed recorder suspended 80 feet below the aircraft. (Reference 1.) Subsequently it became necessary to alter the standard instrument so that it could record glides at an angle as great as 90°. The alteration consisted of the incorporation in the instrument of a yoke suspension and a 90° inclinometer unit, the yoke being shown in Figure 2. At low speeds, however, the instrument proved to be unstable and the inclinometer failed to function. An alternate method of obtaining flightpath angle was applied, in which the vertical velocity was calculated from a time history of altitude obtained by the observer with a sensitive altimeter and battery of stop watches. Flight-path angle followed directly from the ratio between the vertical velocity and true | lack of reliable information on the propeller character-

air speed. The attitude of the autogiro was recorded | istics, no attempt was made to calculate thrust directly

FIGURE 1.—Three-quarter view of PCA-2 autogiro

by a pendulum-type inclinometer (reference 1) fixed [in the fuselage.

Complementary quantities required during the glide tests included air density, control position, rotor speed, and, in a few cases, engine speed. Data from which air density was calculated were obtained by visual observations of a liquid-in-glass type thermometer placed in the air stream and a sensitive altimeter in the observer's cockpit. During a part of the tests atmospheric pressure was recorded by an aneroidtype recording altimeter, but the observations of pressure altitude proved to be a more desirable method. Rotor speeds were obtained visually by the pilot or observer from the indicating tachometer installed in the aircraft. In auxiliary tests made with positive thrust, the pilot also noted engine speed from the engine tachometer.

The flight tests consisted principally of steady 30second glides at angles of attack ranging approximately from 0° to 90° with the propeller stopped in a vertical position by means of a brake. From the average values of dynamic pressure, attitude angle, and flight-path angle given by the continuous records obtained in each glide, the lift and drag characteristics were calculated as described in reference 2. A correction was made for the drag of the suspended instrument from data given in reference 2.

In order to determine the effect of the slipstream on the rotor characteristics, an auxiliary group of glide tests was made with the propeller rotating at sufficient speed to develop varied small amounts of positive thrust. Test procedure in this case was identical with that when the propeller was stopped. Owing to the from engine speed and air speed. The magnitude of the thrust was closely approximated by a considera-

FIGURE 2.—Swivel suspension for flight-path-angle and air-speed recorder

tion of the change in flight-path angle from that at the same air speed with propeller stopped, using a propeller-drag coefficient calculated from the curves given in reference 3.

RESULTS

The lift and drag characteristics of the autogiro are presented in Figures 3 and 4 and in Tables I and II. The area to which the force coefficients are referred is the sum of the swept-disk area and the fixed-wing

the state of operation of an autogiro rotor, is defined by the equation

$$\mu = \frac{V \cos \alpha}{\Omega R}$$

where V-true air speed, feet per second.

 α —angle of attack, degrees.

 Ω —rotor angular velocity, radians per second.

FIGURE 3.—Characteristic curves for PCA-2 autogiro

area, the wing being considered as extending through the fuselage. The use of the swept-disk area is arbitrary, but an arbitrary selection is necessary, inasmuch as the predominating velocity of the rotor blades is not the velocity of flight. The inclusion of the fixedwing area follows by analogy with a biplane. With this choice of area the coefficients are of the same order of

FIGURE 4.—Polar curve for PCA-2 autogiro

magnitude of those of a normal wing. The angle of attack given in the graphs and tables is the angle between the relative wind and a perpendicular to the rotor axis lying in the plane of symmetry. Drag coefficients, unless otherwise specified, have been calculated from the drag of the aircraft as flown less the drag of the suspended instrument.

The rotor parameter μ is plotted in Figure 3 against angle of attack. This parameter, which determines

The effect of the calculated propeller drag upon the drag coefficient and the L/D curve against angle of attack is shown in Figure 5. The propeller drag was estimated from the curves in reference 3 and was

FIGURE 5.—Curves showing effect of propeller on PCA-2 autogiro characteristic curves. Estimated propeller C_D =0.003, propeller drag=4.93 q. (From reference 3.)

assumed constant over the range of angles of attack covered by Figure 5.

The gliding performance with stopped propeller is shown in Figures 6, 7, and 8. Figure 6 shows the variation in flight-path angle γ and indicated vertical velocity V_{\bullet} with indicated air speed. Figure 7 shows indicated vertical velocity as a function of flight-path angle. In Figure 8 vertical velocity has been plotted

against horizontal velocity, and lines of constant flight-path angle have been shown. The polar distance from the origin, indicated by the circular arcs drawn, represents the air speed along the flight path.

FIGURE 6.—Flight-path angle and vertical velocity as functions of air speed for PCA-2 autogiro gliding with stopped propeller

Results of the tests with positive thrust are shown in Figure 9, in which the lift coefficients obtained are plotted against angle of attack. The portion of the lift curve obtained with propeller stopped at corresponding angles of attack is shown in the same figure for comparison.

Figure 7.—Variation of vertical velocity with flight-path angle for PCA-3 autogiro gliding with stopped propeller

ACCURACY

The effect of accidental errors is reflected in the dispersion of experimental points on the curves. It will be noted that this dispersion increases rapidly above

an angle of attack of 16°. This effect is probably a result of the errors introduced by the indirect method of determining flight-path angles at large angles of attack, augmented by the unsteadiness of the aircraft at low air speeds. The number of experimental points obtained is large enough, however, to reduce the resultant accidental errors in faired curves to a small value.

Errors consistent in sign are not indicated by the dispersion of points. The chief source of such errors is the effect of the rotor-induced flow on the magnitude and direction of the resultant air velocity in the vicinity of the suspended flight-path-angle and air-speed recorder. The effect of this flow on the alignment of the suspended instrument, as well as the effect of any inherent misalignment, was eliminated by a determination of the alignment in level flight at various speeds. The alignment thus established is believed precise to within $\pm 0.1^{\circ}$. The effect of the induced flow on the recorded dynamic pressure, however, was not eliminated. Calculations based on the usual wing theory in-

dicate that the magnitude of the induced velocity at the suspended instrument is approximately -0.013 C_RV where C_R is the coefficient of resultant force based on disk area. Owing to uncertainty concerning the justification for applying wing theory to this case, no correction to recorded results was applied. It is probable that at high angles of attack the error in dynamic pressure will be from -2 per cent to -3 per

FIGURE 8.—Gliding performance curve of PCA-2 autogiro, with stopped propeller

Table I presents the data obtained in glides with stopped propeller when the flight-path angle was directly measured, Table II shows the data obtained by indirect measurement of flight-path angle in glides with stopped propeller, and Table III contains the data obtained from glides with rotating propeller.

cent, whereas at low angles of attack the correction may be safely neglected.

If the indeterminate effect of rotor-induced velocities on the suspended instrument is disregarded, it is believed that the values of the faired curves may be relied upon within the following limits:

Quantity	Angles of attack from 0° to 16°	Angles of attack from 16° to 90°
C _L	. ±2 per cent	± 3 per cent.
Cp	do	Do.
a		
$\mu = \frac{V \cos \alpha}{\Omega R}$	±3 per cent	±4 per cent.
γ-flight-path angle	. ±0.1°	±4°.
V	±2 per cent	±2 per cent.
V		

DISCUSSION

The curves included in this report show clearly the general aerodynamic characteristics of the autogiro. The curve in Figure 3 illustrates the fact that the resultant force coefficient is almost constant at all angles of attack above that corresponding to maximum lift. The results in Figure 5 show a maximum L/Dof 4.8 with propeller stopped, at a lift coefficient of 0.150, corresponding to an air speed of 67 miles per hour. By the subtraction of the estimated propeller drag, a maximum L/D of 5.3 is obtained. The curves of gliding performance (figs. 6, 7, and 8) illustrate the ability of the autogiro to descend steeply at a low air speed; when the vertical velocity is a minimum of 15 feet per second, the air speed is about 53 feet per second (36 miles per hour) and the flight-path angle is -17° . These curves also show the rapid increase in vertical velocity with any small decrease in air speed below 45 feet per second. The data in Figure 9 indicate that the presence of positive thrust has no consistent effect on the lift coefficient.

The large speed range possible for the autogiro is indicated by the ratio between $C_{L_{max}}$ and C_{Dmin} in Figure 3, the experimental value of $\frac{0.895}{0.015}$ =60 being unusually high. Comparable values for a conventional airplane would be $\frac{1.40}{0.050}$ =28. Level flight at low speeds proved difficult, however, owing to decreasing control effectiveness as air speed approached its minimum. At air speeds corresponding to the region of $C_{L_{max}}$ the aileron moments were insufficient to overcome the required engine torque. The practical speed range is then less than that indicated by the force coefficients.

The problem of control at the low air speeds and high angles of attack attainable in the autogiro demands attention. During glides at air speeds near the minimum value, corresponding to angles of attack from about 35° to 90°, lateral control was inadequate and the aircraft was unsteady. Elevator control, although sluggish, remained positive at all times, but the ailcrons and rudder often proved unable to check or delay a tendency of the autogiro to roll or yaw.

CONCLUSIONS

The tests on the PCA-2 autogiro as presented in this report lead to the following conclusions:

- 1. The maximum lift coefficient, based on the sum of wing and swept-disk area, is 0.895, the minimum drag coefficient with propeller stopped is 0.015, the maximum L/D with propeller stopped is 4.8, and the maximum resultant force coefficient is 1.208.
- 2. The resultant force coefficient is approximately constant for all angles of attack greater than that corresponding to maximum lift.
- 3. The minimum vertical velocity when gliding with stopped propeller is 15 feet per second, at an air speed of 36 miles per hour, and a flight-path angle of -17° .

FIGURE 9.—Lift coefficient against angle of attack with varying thrust

- 4. The vertical velocity in a vertical descent is 35 feet per second.
- 5. The presence of positive thrust has no consistent influence on lift coefficient.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., May 2, 1932.

REFERENCES

- Coleman, Donald G.: N. A. C. A. Flight-Path-Angle and Air-Speed Recorder. T. N. No. 233, N. A. C. A., 1926.
- Thompson, F. L., and Keister, P. H.: Lift and Drag Characteristics of a Cabin Monoplane Determined in Flight. T. N. No. 362, N. A. C. A., 1931.
- Diehl, Walter S.: Engineering Aerodynamics. The Ronald Press Co., New York, 1928.

TABLE I
AUTOGIRO GLIDE TESTS-PROPELLER STOPPED

Flight No.	Run No.	Flight- path angle, γ deg.	Attitude angle, λ deg.	Angle of attack, or deg.	Weight, W lb.	Lift, L lb.	Apparent drag,	Bomb drag, D, lb.	True drag, D lb.	Dynamic pressure, q lb./ft.i	Lift coef- ficient, CL	Drag coef-ficient,	Rotor speed, Ω rad./sec.	Density, p slug/ft.3	True air speed, V ft./sec.	$V^{\mu}_{\cos \alpha/\Omega}$
A-5	1 2 3 4 5 6 7 8	-15. 4 -16. 5 -18. 0 -18. 7 -16. 0 -17. 3 -18. 0 -19. 2	-13. 1 -14. 1 -15. 8 -17. 3 -13. 3 -15. 0 -16. 0 -17. 7	2.3 2.4 2.2 1.4 2.7 2.3 2.0 1.5	2, 904 2, 868 2, 832 2, 796 2, 899 2, 858 2, 817 2, 776	2, 800 2, 750 2, 690 2, 650 2, 790 2, 730 2, 680 2, 620	771 815 875 896 800 849 871 914	16 16 16 16 16 16 16	755 799 859 882 784 833 855 898	25. 0 27. 4 31. 9 35. 6 24. 6 28. 9 31. 2 35. 1	0. 067 . 060 . 050 . 044 . 067 . 056 . 051	0. 018 . 017 . 016 . 015 . 019 . 017 . 016	14. 3 13. 8 13. 5 13. 2	2. 05 x 10 ⁻² 2. 05 2. 06 2. 08	155. 0 168. 0 173. 4 184. 0	0. 478 . 538 . 569 . 618
A-6	1 2 3 6	-14.5 -16.1 -18.4 -16.8	-11.3 -13.8 -16.7 -14.1	3. 2 2. 3 1. 7 2. 7	2, 912 2, 884 2, 856 2, 772	2, 820 2, 770 2, 710 2, 650	728 799 902 802	15 16 16 16	713 783 886 786	20. 8 25. 5 31. 5 26. 4	. 061 . 065 . 061 . 060	. 020 . 018 . 017 . 018	14.3 14.3 13.6 14.1	2. 04 2. 03 2. 05 2. 06	143. 0 158. 6 175. 6 159. 7	. 440 . 489 . 571 . 500
A-12	1 2 3 4 5 6 7 8 9	-12.3 -12.3 -12.2 -12.4 -13.3 -14.2 -12.2 -12.4 -12.8	-5.4 -6.5 -7.7 -8.3 -9.5 -11.1 -5.7 -6.8 -7.8	6.9 5.8 4.5 4.1 3.8 3.1 6.5 5.6 4.0	2, 904 2, 904 2, 904 2, 868 2, 868 2, 868 2, 832 2, 832 2, 796 2, 796	2, 840 2, 840 2, 840 2, 800 2, 790 2, 780 2, 770 2, 770 2, 730 2, 730	619 619 613 617 660 703 598 609 601	10 12 13 14 15 15 10 12 13	609 607 600 603 645 688 588 597 588 604	8.7 11.0 13.1 14.3 17.4 21.1 9.4 11.3 13.6	. 193 . 152 . 128 . 116 . 094 . 077 . 174 . 145 . 119	. 042 . 033 . 027 . 025 . 022 . 019 . 037 . 031 . 626 . 023	15. 6 15. 4 15. 1 15. 4 14. 9 14. 6 15. 2 16. 1 15. 2 14. 9	2. 02 2. 09 2. 15 2. 02 2. 12 2. 20 2. 01 2. 10 2. 08 2. 16	93. 0 102. 7 110. 8 119. 1 128. 3 138. 8 96. 8 104. 0 114. 6 119. 7	. 262 . 294 . 324 . 342 . 382 . 419 . 279 . 304 . 333 . 356
A-13	1 2 3 4 5 6 7 8 9	-12.5 -12.4 -12.8 -13.4 -12.2 -13.3 -12.3 -12.0 -13.7	-7. 2 -8. 3 -9. 1 -9. 7 -6. 9 -3. 7 -4. 7 -5. 4	5. 3 4. 1 3. 7 3. 7 5. 3 9. 6 7. 6 6. 6	2, 904 2, 904 2, 868 2, 868 2, 832 2, 832 2, 832 2, 796 2, 796 2, 796	2, 830 2, 840 2, 800 2, 790 2, 770 2, 750 2, 770 2, 730 2, 730 2, 710	627 625 634 666 596 651 603 581 581 663	13 14 14 15 12 6 8 9	614 611 620 651 686 645 595 572 571 667	12. 4 14. 5 17. 0 18. 6 11. 3 5. 6 7. 3 8. 3 9. 3 5. 1	. 135 . 116 . 097 . 088 . 145 . 292 . 223 . 198 . 175 . 315	. 030 . 025 . 022 . 021 . 031 . 068 . 048 . 041 . 037 . 076	15. 5 15. 2 15. 2 15. 1 14. 9 15. 0	2. 02 2. 08 2. 02 2. 10 2. 00 2. 06 2. 10 2. 02 2. 06 2. 10	110. 9 118. 0 129. 8 133. 3 106. 3 73. 7 83. 6 90. 5 94. 8 69. 7	.316 .343 .378 .390 .316 .215
A-14	1 2 3 4 5 6 7 8 9	-13. 1 -12. 6 -12. 1 -11. 9 -12. 1 -12. 4 -12. 3 -11. 9 -12. 2	-3.8 -4.4 -6.5 -4.7 -4.8 -5.2 -6.2 -7.2	9. 3 8. 2 5. 6 7. 7 7. 6 7. 1 5. 7 5. 0	2, 892 2, 892 2, 892 2, 892 2, 850 2, 850 2, 850 2, 808 2, 808 2, 808	2, 810 2, 820 2, 830 2, 830 2, 790 2, 780 2, 780 2, 740 2, 740 2, 740 2, 740	657 630 607 596 599 613 613 598 579	7 8 9 12 9 8 9	650 622 598 587 587 604 605 589 568	5. 9 6. 7 8. 1 8. 4 11. 3 7. 5 7. 3 8. 0 9. 9 12. 2	. 283 . 248 . 206 . 199 . 146 . 219 . 224 . 204 . 164 . 133	. 066 . 055 . 044 . 047 . 031 . 048 . 049 . 044 . 034	15. 4 15. 2 15. 1 15. 0 15. 3 15. 2 14. 9 16. 1 14. 9	1. 99 2. 05 2. 10 2. 15 2. 05 2. 12 2. 12 2. 16 2. 02 2. 07 2. 14	76. 8 80. 8 88. 0 88. 5 105. 1 84. 0 82. 4 88. 6 97. 9 106. 6	. 218 . 233 . 303 . 243 . 243 . 257 . 286 . 316
A-19	1 2 3 4 5 6 7 8 9	-14. 1 -13. 3 -12. 8 -12. 7 -14. 4 -13. 5 -12. 6 -12. 5 -14. 0 -13. 5	-3.3 -3.7 -4.4 -4.8 -3.1 -3.8 -4.4 -3.4 -3.8	10. 8 9. 6 8. 4 7. 9 11. 3 9. 7 8. 2 7. 7 10. 6 9. 7	2, 886 2, 886 2, 886 2, 886 2, 850 2, 850 2, 850 2, 850 2, 832 2, 832	2, 800 2, 810 2, 810 2, 810 2, 760 2, 770 2, 780 2, 780 2, 750 2, 750	705 664 638 635 710 665 621 616 686	67 88 5 68 86 7	699 657 630 627 705 659 613 608 679 653	4. 9 5. 7 6. 6 7. 2 4. 5 5. 4 7. 0 7. 5 4. 9 5. 6	. 336 . 291 . 254 . 231 . 364 . 305 . 234 . 219 . 330 . 292	. 083 . 068 . 057 . 054 . 093 . 072 . 052 . 048 . 081	15. 5 15. 3 15. 2 15. 0 15. 2 15. 0 14. 9 15. 2	1. 99 2. 02 2. 06 2. 11 2. 00 2. 03 2. 09 2. 14 2. 00 2. 04	70. 4 75. 2 79. 8 82. 5 66. 8 73. 0 81. 9 83. 6 70. 2 73. 7	. 198 . 215 . 230 . 242 . 190 . 210 . 240 . 247 . 201 . 215
A-20	1 2 3 4 5 6 7 8 9	-16. 1 -14. 3 -13. 5 -16. 5 -14. 1 -13. 5 -14. 0 -14. 7 -13. 7	-2.7 -3.3 -3.5 -2.5 -3.3 -3.8 -3.0	13. 4 11. 0 10. 0 14. 0 10. 8 9. 7 12. 4	2, 886 2, 886 2, 886 2, 886 2, 844 2, 844 2, 844 2, 814 2, 814 2, 814	2, 770 2, 800 2, 800 2, 770 2, 760 2, 730 2, 740 2, 760 2, 720 2, 730	800 713 673 820 694 711 757 689 715 667	4 6 6 5 6 5 6	796 707 686 816 688 705 752 683 710 661	3. 5 4. 8 5. 2 3. 2 4. 8 5. 6 3. 8 5. 1 4. 0 5. 2	. 471 . 345 . 316 . 516 . 342 . 390 . 427 . 320 . 402 . 308	. 135 . 067 . 075 . 152 . 065 . 074 . 117 . 079 . 105	15. 3	1. 99 2. 03 2. 08 2. 12 1. 99 2. 03 2. 10 2. 14 1. 96	59. 2 68. 6 71. 0 54. 7 69. 5 74. 0 60. 1 68. 9 72. 4	. 167
A-21	2 4 6 8 10	-18.4 -18.0 -18.0 -17.6 -17.1	-1.9 -2.0 -2.1 -2.0 -2.1	16. 5 16. 0 15. 9 15. 6 15. 0	2, 880 2, 832 2, 832 2, 796 2, 796	2, 730 2, 690 2, 690 2, 660 2, 670	910 875 875 844 821	3 3 3 4	907 872 872 841 817	2.7 2.7 2.9 2.9 3.0	. 597 . 588 . 556 . 550 . 523	. 196 . 188 . 178 . 174 . 160				
A-22	2 3 4 5 6 7 8 9	-16.5 -17.7 -16.2 -17.6 -14.9 -16.2 -14.8 -16.9 -15.2	-2.4 -2.1 -2.6 -2.1 -2.9 -2.4 -2.9 -2.3 -3.0	14. 1 15. 6 13. 6 15. 5 12. 0 13. 8 11. 9 14. 6 12. 2	2, 880 2, 880 2, 884 2, 844 2, 844 2, 844 2, 844 2, 808 2, 808	2, 760 2, 740 2, 760 2, 710 2, 750 2, 730 2, 780 2, 700 2, 720	818 875 804 859 731 794 725 820 739	4 3 4 3 5 4 5 4 5	814 872 800 856 726 790 720 816 734	3.5 2.9 3.5 2.9 4.1 3.3 4.1 3.2 4.0	. 490 . 566 . 468 . 560 . 396 . 485 . 396 . 503 . 407	. 145 . 178 . 136 . 177 . 104				

TABLE II
AUTOGIRO GLIDE TESTS-PROPELLER STOPPED

Flight No.	Run No.	Vert. veloc- ity V. ft./sec.	Flight- path angle, γ deg.	Attitude angle, λ deg.	Angle of attack, or deg.	Weight, Wlb.	Lift, L lb.	Apparent drag, D. lb.	Bomb drag, D, lb.	True drag, D lb.	Dynamic pressure, q lb./ft.	Lift coeffi- clent, C _L	Drag coeffi- cient, CD	Rotor speed, Ω rad./sec.	Density, p slug/ft.3	True air- speed, V _T ft./sec.	μVcos α/ΩR
A-26	1 2	19. 0 20. 0	-24. 9 -29. 6	-1. š -1. š	23. 1 28. 0	2, 850 2, 840	2, 580 2, 470	1, 200 1, 401	2 2	1, 198 1, 399	2. 1 1. 7	0. 734 . 851	0.341 .481		2. 04x10 ⁻¹ 2. 08	45. 1 40. 7	
A-26A	1 2 3 4 5 6 7 8	19. 5 19. 6 22. 9 17. 4 20. 9 19. 5 18. 6 18. 3 20. 4	-27. 5 -29. 6 -39. 0 -22. 9 -32. 4 -28. 6 -25. 5 -24. 8 -30. 4	-1.7 -1.5 -1.5 -1.7 -1.5 -1.6 -1.7 -1.6	25. 8 28. 1 37. 5 21. 2 30. 9 27. 0 23. 8 23. 2 28. 8	2, 886 2, 868 2, 850 2, 832 2, 814 2, 796 2, 778 2, 760 2, 742	2, 560 2, 500 2, 210 2, 610 2, 380 2, 450 2, 510 2, 500 2, 370	1, 331 1, 418 1, 794 1, 103 1, 510 1, 339 1, 195 1, 158 1, 388	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 329 1, 416 1, 792 1, 101 1, 508 1, 337 1, 193 1, 156 1, 386	1. 9 1. 7 1. 4 2. 1 1. 6 1. 7 1. 9 2. 0 1. 7	. 808 . 887 . 929 . 741 . 901 . 844 . 771 . 747 . 841	. 420 . 503 . 754 . 313 . 572 . 461 . 366 . 346 . 493		2. 11 2. 10 2. 13 2. 08 2. 05 2. 07 2. 05 2. 09 2. 05	42. 2 39. 7 36. 4 44. 6 39. 0 40. 7 43. 3 43. 5 40. 3	
A-27	1 2 3 4 5 6 7 8	18.9 17.4 19.3 17.4 19.1 21.7 18.2 18.5	-28. 0 -21. 5 -28. 7 -22. 9 -26. 8 -33. 0 -25. 0 -26. 5	-1.7 -1.6 -1.6 -1.6 -1.6 -1.7	26. 3 19. 8 27. 1 21. 3 25. 2 31. 4 23. 3 24. 9	2, 868 2, 856 2, 844 2, 832 2, 820 2, 808 2, 796 2, 784	2, 530 2, 650 2, 500 2, 610 2, 520 2, 360 2, 530 2, 490	1, 350 1, 048 1, 367 1, 102 1, 272 1, 530 1, 180 1, 245	222222222222222222222222222222222222222	1, 348 1, 046 1, 365 1, 100 1, 270 1, 528 1, 178 1, 243	1.7 2.3 1.7 2.1 1.8 1.6 1.9	. 872 . 685 . 888 . 741 . 819 . 865 . 778 . 834	. 464 . 270 . 484 . 313 . 412 . 561 . 361 . 416	15. 0 15. 2 15. 2 15. 0 15. 0 15. 2 14. 9 15. 0	2. 12 2. 04 2. 06 2. 09 2. 04 2. 04 2. 06 2. 06	40. 2 47. 4 40. 2 44. 7 42. 3 39. 8 43. 1 41. 4	0. 108 . 128 . 109 . 122 . 111 . 098 . 117 . 110
A-28	1 2 3 5 6 7	16. 9 17. 8 18. 3 18. 9 20. 4 19. 1	-20.4 -23.2 -24.3 -26.7 -29.9 -27.8	-1.8 -1.7 -1.5 -1.6 -1.7 -1.7	18. 6 21. 5 22. 8 25. 1 28. 2 26. 1	2, 860 2, 843 2, 826 2, 804 2, 787 2, 770	2, 680 2, 613 2, 575 2, 508 2, 417 2, 450	998 1, 120 1, 164 1, 259 1, 391 1, 294	3 3 3 2 2 2	995 1, 117 1, 161 1, 257 1, 389 1, 292	2.4 2.1 2.0 1.9 1.7 1.7	. 663 . 745 . 750 . 792 . 829 . 841	. 246 . 318 . 339 . 397 . 478 . 446	15. 4 15. 4 15. 2 15. 1 15. 2 15. 1	2.04 2.03 2.06 2.11 2.06 2.06	48. 4 45. 2 44. 4 42. 1 40. 9 40. 9	. 133 . 121 . 119 . 112 . 108 . 108
A-30	2 3 4 5 6 7 8	20. 3 24. 2 23. 7 23. 0 23. 4 24. 3 20. 2 20. 3	-29. 5 -38. 5 -33. 4 -40. 0 -38. 5 -42. 3 -31. 3 -31. 7	-1.5 -1.5 -1.4 -1.4 -1.5 -1.5 -1.6 -1.5	28. 0 37. 0 37. 0 38. 6 37. 0 40. 8 29. 7 30. 2	2, 900 2, 890 2, 880 2, 870 2, 860 2, 840 2, 830 2, 820	2, 520 2, 260 2, 260 2, 200 2, 240 2, 100 2, 410 2, 400	1, 430 1, 800 1, 790 1, 847 1, 775 1, 910 1, 471 1, 482	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 428 1, 798 1, 788 1, 345 1, 773 1, 908 1, 469 1, 480	1. 8 1. 6 1. 6 1. 4 1. 5 1. 4 1. 6 1. 6	. 819 . 817 . 855 . 962 . 873 . 883 . 584 . 880	. 464 . 659 . 678 . 807 . 695 . 801 . 539 . 543	15. 0 15. 0 14. 9 15. 1 15. 0 14. 9 14. 9	2. 15 2. 14 2. 14 2. 11 2. 14 2. 15 2. 15 2. 16	41. 2 38. 8 38. 2 35. 8 37. 6 36. 1 38. 8 38. 6	. 106 . 092 . 091 . 082 . 089 . 082 . 100
A-31	1 2 3 4 5 6 7 8	21. 0 20. 5 28. 6 22. 4 22. 3 24. 7 28. 3 19. 5	-33. 8 -31. 7 -50. 3 -37. 0 -36. 7 -43. 3 -52. 4 -32. 0	-1.5 -1.5 -1.4 -1.5 -1.5 -1.4 -1.3 -1.5	32. 3 30. 2 48. 9 35. 5 35. 2 41. 9 51. 1 30. 5	2, 860 2, 845 2, 830 2, 815 2, 800 2, 785 2, 770 2, 755	2, 376 2, 420 1, 808 2, 249 2, 245 2, 027 1, 690 2, 336	1, 590 1, 496 2, 177 1, 695 1, 674 1, 910 2, 194 1, 460	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 588 1, 494 2, 175 1, 693 1, 672 1, 908 2, 192 1, 458	1. 6 1. 7 1. 5 1. 5 1. 4 1. 4 1. 5	. 901 . 862 . 709 . 881 . 883 . 847 . 713 . 949	. 602 . 535 . 852 . 663 . 655 . 803 . 933 . 593	14. 8 14. 8 14. 8 14. 8 14. 8 14. 8 14. 8	2. 18 2. 18 2. 18 2. 18 2. 16 2. 17 2. 20 2. 15	37. 8 39. 0 37. 2 37. 2 37. 3 36. 0 35. 7 36. 8	. 094 . 099 . 071 . 069 . 090 . 079 . 065 . 094
A-32	1 2 3 4 5 6 7 8 9	25. 0 31. 3 20. 6 27. 2 22. 0 27. 5 20. 8 22. 2 20. 8	-43.6 -61.2 -32.8 -50.2 -36.7 -49.4 -33.5 -35.0 -34.4	-1.3 -1.3 -1.6 -1.6 -1.5 -1.5 -1.5 -1.5	42. 3 59. 9 31. 2 48. 6 35. 2 47. 9 32. 0 33. 5 32. 9	2, 870 2, 855 2, 840 2, 825 2, 810 2, 795 2, 780 2, 765 2, 750	2, 078 1, 375 2, 385 1, 810 2, 253 1, 820 2, 318 2, 264 2, 269	1, 980 2, 501 1, 539 2, 170 1, 680 2, 121 1, 535 1, 587 1, 554	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 978 2, 499 1, 537 2, 168 1, 678 2, 119 1, 533 1, 585 1, 552	1.4 1.4 1.6 1.4 1.5 1.4 1.5	. 872 . 599 . 904 . 794 . 915 . 767 . 905 . 831 . 921	. 833 1. 092 . 583 . 949 . 681 . 891 . 600 . 582 . 630	14.8 15.1 14.9 14.9 15.0 14.8 14.8	2. 15 2. 13 2. 16 2. 15 2. 15 2. 14 2. 13 2. 15 2. 15	36. 2 35. 7 38. 0 35. 4 36. 8 36. 2 37. 7 38. 7 36. 8	. 079 . 051 . 095 . 068 . 068 . 070 . 094 . 095 . 091
A-33	1 2 3 4 5 6 7 8 9	33. 4 35. 7 34. 1 33. 6 34. 9 34. 0 32. 7 30. 3 32. 4 31. 1	-69. 4 -74. 8 -63. 2 -63. 6 -73. 3 -62. 0 -60. 9 -55. 0 -62. 3 -59. 4	-1.3 -1.3 -1.3		2, 870 2, 855 2, 840 2, 825 2, 810 2, 795 2, 780 2, 765 2, 750 2, 735	1, 010 748 1, 280 1, 257 806 1, 310 1, 350 1, 585 1, 278 1, 391	2, 686 2, 750 2, 530 2, 530 2, 692 2, 468 2, 430 2, 260 2, 430 2, 350	2222222222222	2, 684 2, 748 2, 528 2, 528 2, 690 2, 466 2, 428 2, 258 2, 428 2, 348	1. 4 1. 5 1. 6 1. 5 1. 6 1. 5 1. 5 1. 4 1. 4	. 442 . 304 . 485 . 493 . 338 . 481 . 530 . 643 . 537	1, 175 1, 116 . 958 . 990 1, 134 . 904 . 951 . 917 1, 022 1, 029	15. 2 15. 1 15. 1 15. 0 15. 0 14. 9 14. 7 14. 7	2. 12 2. 12 2. 14 2. 14 2. 13 2. 17 2. 15 2. 13 2. 11 2. 08	35. 7 37. 0 38. 2 37. 5 36. 4 38. 5 37. 4 37. 0 36. 6 36. 1	. 037 . 028 . 051 . 049 . 031 . 054 . 054 . 064 . 051 . 055
A-34	1 2 3 4 5 6 7 9	34. 4 34. 3 34. 3 33. 9 22. 8 23. 0 20. 5 30. 2 32. 0	-62.1 -63.3 -65.4 -64.2 -35.0 -36.4 -31.6 -53.2 -60.5	-1.5 -1.7 -1.5 -1.6 -1.8 -1.8 -1.8 -1.6 -1.5	60. 6 61. 6 63. 9 62. 6 33. 2 34. 6 29. 8 51. 6 59. 0	2, 895 2, 869 2, 843 2, 817 2, 791 2, 765 2, 739 2, 687 2, 661	1, 352 1, 289 1, 180 1, 224 2, 290 2, 230 2, 330 1, 608 1, 308	2, 550 2, 560 2, 580 2, 530 1, 602 1, 640 1, 435 2, 150 2, 310	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 548 2, 558 2, 578 2, 528 1, 600 1, 638 1, 433 2, 148 2, 308	1.6 1.5 1.5 1.7 1.6 1.6 1.5	.512 .487 .463 .479 .813 .817 .841 .629	. 967 . 969 1. 010 . 992 . 569 . 600 . 517 . 838 . 937	15. 3 15. 1 15. 2 15. 2 15. 0 14. 9 14. 9 14. 7 14. 6	2.06 2.12 2.12 2.12 2.11 2.14 2.14 2.12 2.15	38. 9 38. 4 37. 7 37. 7 39. 7 38. 8 39. 1 37. 7 36. 8	. 056 . 054 . 048 . 051 . 098 . 095 . 101 . 070 . 057
A-35	1 2 3 4 5 6 7 8	16. 8 18. 3 16. 6 18. 8 16. 4 18. 6 16. 6 17. 6	-21.5 -28.1 -22.4 -26.4 -20.1 -24.3 -21.5 -23.8 -23.4	-2.0 -2.0 -2.0 -1.9 -2.1 -2.0 -2.0 -2.0	19. 5 24. 1 20. 4 24. 5 18. 0 22. 3 19. 5 21. 8 21. 4	2, 900 2, 880 2, 860 2, 840 2, 820 2, 800 2, 780 2, 760 2, 740	2, 700 2, 580 2, 640 2, 540 2, 650 2, 550 2, 590 2, 520 2, 510	1, 063 1, 287 1, 089 1, 282 967 1, 157 1, 020 1, 115 1, 087	3 2 3 3 3 3 3 2 2 2	1,060 1,285 1,086 1,280 964 1,154 1,017 1,113 1,085	2. 2 1. 9 2. 1 1. 9 2. 4 2. 2 2. 2 2. 0	. 713 . 793 . 750 . 780 . 641 . 690 702 . 734 . 750	. 280 . 388 . 309 . 387 . 233 . 313 . 275 . 325 . 325	14. 8 14. 5 14. 7 14. 8 14. 5 14. 5 14. 5 14. 7 14. 7	2. 15 2. 23 2. 18 2. 16 2. 15 2. 17 2. 13 2. 14 2. 13	45. 7 41. 6 43. 6 42. 7 47. 45. 0 45. 3 43. 5 43. 1	. 130 . 116 . 124 . 115 . 138 . 127 . 129 . 123 . 121
A-39	1 2 3 4 5 6 7 8 9	33. 4 36. 0 35. 2 38. 3 34. 8 34. 4 35. 1 34. 7 33. 7 33. 1	-64.8 -78.8 -72.4 -90.0 -72.9 -71.8 -72.9 -66.6 -63.8	-1.6 -1.5 -1.5 -1.7 -1.4 -1.6 -1.7 -1.7 -1.8 -1.9	63. 2 77. 3 70. 9 90. 0 71. 5 70. 2 71. 2 71. 2 64. 8 61. 9	2, 890 2, 870 2, 860 2, 840 2, 820 2, 820 2, 780 2, 770 2, 750 2, 730	1, 226 557 863 0 830 874 818 813 1, 090 1, 202	2, 610 2, 820 2, 720 2, 840 2, 700 2, 660 2, 660 2, 640 2, 520 2, 450	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 608 2, 818 2, 718 2, 838 2, 658 2, 658 2, 658 2, 518 2, 448	1.5 1.4 1.4 1.4 1.5 1.5 1.5	. 498 . 226 . 357 0 . 344 . 361 . 333 . 342 . 443 . 472	1, 060 1. 142 1. 121 1, 171 1. 114 1. 098 1. 080 1. 109 1. 031 . 960	14. 9 14. 9 15. 0 14. 9 14. 7 14. 7 14. 7 14. 7 14. 7	2 14 2 17 2 10 2 14 2 17 2 19 2 17 2 13 2 17 2 13 2 17 2 2 1	36. 9 36. 7 36. 9 36. 6 36. 4 36. 2 36. 7 36. 3 36. 7	. 050 . 024 . 036 . 000 . 035 . 037 . 036 . 036 . 047 . 053

TABLE II—Continued

AUTOGIRO GLIDE TESTS-PROPELLER STOPPED-Continued

Flig.	un ło.	Vert. velocity V. ft./sec.	Flight- path angle, y deg.	Attitude angle, λ deg.	Angle of attack, or deg.	Weight, Wlb.	Lift, L lb.	Apparent drag, De lb.	Bomb drag, D. lb.	True drag, D lb.	Dynam- ic pres- sure, q lb./ft. ²	Lift coeffi- cient, C _L	Drag coeffi- cient, Co	Rotor speed, Ω rad./sec.	Density, o slug/ft.3	True air- speed, V _T ft./sec.	$\mu V \cos \alpha/\Omega R$
A-4	2 3 5 6 8 9	36. 0 37. 0 35. 4 33. 3 33. 5 32. 3 31. 3	-74. 4 -90. 0 -71. 1 -66. 5 -64. 6 -61. 6 -59. 5	-1.3 -1.4 -1.6 -1.6 -1.7 -1.8 -1.8	73. 1 90. 0 69. 5 64. 9 62. 9 59. 8 57. 7	2, 880 2, 860 2, 850 2, 830 2, 790 2, 770 2, 760	775 0 923 1, 128 1, 197 1, 318 1, 400	2, 770 2, 860 2, 700 2, 590 2, 520 2, 440 2, 380	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 768 2, 858 2, 698 2, 588 2, 518 2, 438 2, 378	1. 5 1. 4 1. 5 1. 5 1. 5 1. 5	. 304 0 . 362 . 459 . 470 . 535 . 579	1. 085 1. 179 1. 057 1. 050 . 987 . 990 . 982	14.9 15.0 14.9 14.8 14.6 14.7	2. 17x10 ⁻³ 2. 13 2. 17 2. 21 2. 20 2. 17 2. 17	37. 4 36. 7 37. 4 36. 3 37. 1 36. 7 36. 3	. 032 0 . 039 . 047 . 051 . 056
A-4	2 3 4 5 6 7	33. 8 33. 9 37. 0 33. 5 34. 1 33. 2	-67. 1 -71. 3 -90. 0 -67. 8 -83. 7 -66. 5	-1.7 -1.9 -1.8 -1.8 -1.8 -2.0	65. 4 69. 4 90. 0 66. 0 81. 9 64. 5	2, 820 2, 790 2, 770 2, 740 2, 720 2, 690	1, 098 896 0 1, 035 299 1, 072	2, 600 2, 640 2, 770 2, 540 2, 700 2, 470	2 2 2 2 2 2 2	2, 598 2, 638 2, 768 2, 538 2, 698 2, 468	1.4 1.4 1.5 1.4 1.3	. 453 . 377 0 . 436 . 136 . 452	1. 072 1. 109 1. 124 1. 067 1. 227 1. 040	15. 1 14. 9 14. 9 14. 9 14. 6 14. 8	2. 13 2. 19 2. 15 2. 15 2. 21 2. 14	36. 7 35. 8 36. 8 36. 2 34. 3 36. 2	.042 .034 0 .041 .012 .043
A-40	1 2 3 4 8 9	36. 8 36. 1 24. 2 32. 2 25. 2 34. 9 23. 6	-90. 0 -80. 8 -41. 0 -63. 4 -43. 8 -85. 6 -39. 6	-1.9 -2.0 -2.3 -2.1 -2.1 -2.1 -1.9	90. 0 78. 8 38. 7 61. 3 41. 7 83. 5 37. 7	2, 880 2, 860 2, 830 2, 810 2, 710 2, 680 2, 660	0 460 2, 130 1, 258 1, 956 210 2, 050	2, 880 2, 820 1, 860 2, 510 1, 874 2, 670 1, 697	2 2 2 2 2 2 2 2	2, 878 2, 818 1, 858 2, 508 1, 872 2, 668 1, 695	1.4 1.4 1.4 1.4 1.3	0 .194 .906 .550 .824 .095 .832	1. 258 1. 184 . 781 1. 097 . 787 1. 214 . 688	14. 9 15. 2 15. 1 15. 0 14. 9 14. 7 14. 8	2. 14 2. 10 2. 07 2. 08 2. 12 2. 12 2. 13	35, 5 36, 6 36, 9 36, 0 36, 4 35, 0 37, 0	0 . 021 . 085 . 051 . 081 . 012 . 088

TABLE III
AUTOGIRO GLIDE TESTS—PROPELLER ROTATING

Flight No.	Run No.	Vertical velocity, V. ft./sec	Dy- namic pres- sure, q lb/ft.2	Density, o slug/ft.2	True air speed V _T ft./sec.	Flight- path angle, γr deg.	Attitude angle deg. \(\lambda\)	Angle of attack, or deg.	Weight, Wlb.	Lift, L lb.	Lift coeffi- cient, C _L	Normal flight path angle, γ deg.	Thrust,	Engine speed, Nr.p.m.	V/nD
A-44	1 4 6 7 9	15. 4 15. 6 17. 2 16. 1 16. 5	5. 5 5. 2 2. 2 4. 9 2. 2	2. 16×10 ⁻¹ 2. 15 2. 17 2. 16 2. 16	71. 0 69. 1 45. 4 67. 6 44. 9	-12.5 -13.0 -22.3 -13.8 -21.5	-2.3 -2.1 -1.8 -2.2 -1.6	10. 2 10. 9 20. 5 11. 6 19. 9	2, 880 2, 840 2, 820 2, 810 2, 780	2, 810 2, 770 2, 610 2, 730 2, 590	0. 305 319 . 690 . 327 . 701	-13. 4 -13. 7 -22. 1 -14. 0 -22. 1	18 · 10 · -21 · -14 · 19	830 820 500 830 510	0. 570 . 562 . 606 . 543 . 588
A-45	1 2 3 4 5 6 7 8 9	13. 6 13. 7 17. 7 13. 2 13. 8 17. 0 12. 9 14. 8 17. 2	5.5 3.1 2.2 4.9 2.9 2.1 5.1 3.0 2.0	2 16 2 15 2 18 2 16 2 16 2 16 2 16 2 17 2 15 2 15	71. 0 53. 9 45. 3 67. 6 52. 0 43. 6 68. 5 52. 9 42. 8	-11. 0 -14. 7 -23. 0 -11. 2 -15. 3 -22. 9 -10. 8 -16. 2 -23. 7	9 2 -1.1 5 1 9 6 2	10. 1 14. 5 21. 9 10. 7 15. 2 22. 0 10. 2 16. 0 22. 6	2, 880 2, 870 2, 860 2, 840 2, 830 2, 820 2, 810 2, 800 2, 780	2, 830 2, 780 2, 630 2, 790 2, 730 2, 600 2, 760 2, 690 2, 550	. 307 . 527 . 696 . 335 . 554 . 740 . 321 . 527 . 763	-13. 4 -16. 8 -22. 1 -14. 0 -17. 5 -23. 3 -13. 8 -17. 2 -24. 8	94 90 -46 115 95 10 122 34 43	1, 020 810 610 1, 010 815 610 1, 020 815 610	. 465 . 444 . 496 . 447 . 426 . 477 . 448 . 433 . 469
A-46	1 2 3 4 5 6 7 8	9.6 12.3 15.7 9.4 11.6 14.5 9.1 12.0 14.1	. 4.9 3.0 2.0 5.3 3.3 2.3 5.0 3.0 2.2	2. 14 2. 13 2. 14 2. 13 2. 14 2. 14 2. 13 2. 13 2. 13 2. 14	67. 5 52. 8 42. 9 70. 5 55. 3 46. 2 68. 9 53. 7 45. 1	-8. 2 -13. 5 -21. 5 -7. 6 -12. 1 -18. 2 -7. 6 -12. 9 -18. 2	2.7 1.9 3 2.2 1.6 2 2.5 1.8	10. 9 15. 4 21. 2 9. 8 13. 7 18. 0 10. 1 14. 7 18. 4	2, 880 2, 870 2, 860 2, 840 2, 830 2, 820 2, 810 2, 800 2, 780	2, 850 2, 790 2, 660 2, 810 2, 760 2, 680 2, 790 2, 730 2, 640	. 345 . 557 . 795 . 314 . 498 . 693 . 327 . 526 . 715	-14.0 -17.2 -24.8 -13.6 -16.3 -21.1 -13.9 -17.2 -22.1	267 171 155 271 193 131 284 195 178	1, 290 1, 040 760 1, 280 1, 020 750 1, 290 1, 020 770	. 349 . 339 . 377 . 368 . 362 . 406 . 357 . 352 . 391
A-51	1 2 3 4 5 6 7 8	15. 5 14. 4 13. 2 14. 8 14. 2 14. 2 16. 4 13. 9 15. 0	2. 6 3. 1 5. 5 2. 5 3. 2 5. 3 2. 1 3. 4 5. 4	2. 10 2. 11 2. 11 2. 12 2. 16 2. 11 2. 16 2. 06 2. 06	49. 7 54. 4 71. 9 48. 5 54. 6 70. 9 43. 9 57. 4 72. 4	-18. 2 -15. 4 -10. 6 -17. 8 -15. 1 -11. 5 -21. 9 -14. 0 -11. 9	3 -1.5 -2.73 -1.3 -2.8 0 -1.5 -2.7	17. 9 13. 9 7. 9 17. 5 13. 8 8. 7 21. 9 12. 5 9. 2	2, 890 2, 870 2, 850 2, 830 2, 810 2, 790 2, 770 2, 750 2, 730	2, 750 2, 770 2, 800 2, 690 2, 710 2, 730 2, 570 2, 670 2, 670	. 625 . 525 . 303 . 637 . 497 . 305 . 731 . 460 . 292	-18.9 -16.8 -13.4 -19.5 -16.6 -13.6 -23.3 -16.1 -13.5	22 44 91 72 58 76 47 83 46	760 660 815 750 670 820 750 660 820	. 437 . 550 . 589 . 432 . 544 . 576 . 390 . 580 . 589

Positive directions of axes and angles (forces and moments) are shown by arrows

I	Axis		Mome	nt about	axia	Angle		Velocities		
	Designation Symbol			Syms bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular	
	Longitudinal X Lateral Y Normal Z	X X Z	rolling pitching yawing	L M N		roll pitch yaw	•		p q	

Absolute coefficients of moment

$$C_i = \frac{L}{abS}$$

$$C_{\infty} = \frac{M}{qcS}$$

$$-\dot{c} = \frac{N}{\phi b S}$$

Angle of set of control surface (relative to neutral position), d. (Indicate surface by proper subscript.)

PROPELLER SYMBOLS

- Diameter.
- Geometric pitch.
- p/D, Pitch ratio.
- V'. Inflow velocity.
- Slipstream velocity
- Thrust, absolute coefficient C.
- Torque, absolute coefficient $O_q = \frac{Q}{\rho n^2 D^2}$
- P. Power, absolute coefficient $C_P = \frac{1}{\rho n^3 D^3}$
- Car Speed power coefficient
- Efficiency.
- n. Revolutions per second, r. p. s.

 Effective helix angle = $\tan \frac{V}{2\pi rn}$

5. NUMERICAL RELATIONS

- 1 hp=76.04 kg/m/s=550 lb./ft./sec.
- 1 kg/m/s = 0.01315 hp
- 1 mi./hr. = 0.44704 m/s
- m/s=2.23693 mi./hr.

- 1. lb. = 0.4535924277 kg.
- kg = 2.2046224 lb.
- 1 mi = 1609.35 m = 5280 ft.

			AL DESIGNATION OF THE PARTY OF			
Ť			Monsent at		Angle .	Velocities
7	A.346		Money a			
		Fores .			CONTRACTOR	Linear
S		Daration			Dontrie Sym	compo Tamiar
	Designation	The Control of	New Bullion .		A ston 17 101	ment along
7	THE RESERVE					
×						
	The state of the s	6.				The state of the
	Lateral		Proching			THE PERSON NAMED IN
: 1	Normal is				\$113 Pm	
3).	T		NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	A STATE OF THE PARTY OF THE PAR	A CONTRACTOR OF THE STATE OF TH	

Sectrol surface frestive to neutral indicate surface by proper subscript.)

colute coefficients of the County of the County of Count

absolute coefficient O= m'D

Sipetrous: relocate.
Thrust, absolute conflicient

mix angle ten (77) Torque, absolute gogificien

hp=76.00 tp=m/a=880 meetro moterprove 100 mph=6.8470 mpe 10ps=2.2870 mph